Manufactura industrial
Internet industrial de las cosas | Materiales industriales | Mantenimiento y reparación de equipos | Programación industrial |
home  MfgRobots >> Manufactura industrial >  >> Manufacturing Technology >> Proceso de manufactura

Reloj basado en RTC

Componentes y suministros

Arduino Nano R3
× 1
Reloj en tiempo real (RTC)
Usé el módulo RTC basado en ds1307. Hace el trabajo mucho más fácil. Pero podrías hacer uno tú mismo, es muy fácil.
× 1
Pantalla LED de siete segmentos de 4 dígitos
× 1
fila única de encabezado femenino
× 3
tablero perforado
obtén esto si quieres soldar este proyecto y hacerlo presentable. Para facilitar la soldadura, obtenga una placa de soldadura que tenga rastros como una placa de pan.
× 1
Cables de puente (genéricos)
× 25
Encabezado masculino 40 Posición 1 Fila (0.1 ")
× 1

Herramientas y máquinas necesarias

Soldador (genérico)
multímetro
Todo proyecto necesita un multímetro. Así que invierta en un par estándar, funcionará durante al menos 4 años y puede ser mucho más si sabe cómo repararlo. Lo necesitará para verificar la conectividad de su soldadura y para verificar la corriente consumida por el circuito.

Aplicaciones y servicios en línea

Arduino IDE
Arduino Fritzing

Acerca de este proyecto

Este es un reloj digital realmente simple y fácil de ensamblar creado usando el RTC DS1307 IC. Con una pantalla LCD. Simplemente muestra la hora en una pantalla de siete segmentos de 4 dígitos. El código también se puede modificar fácilmente para darle una funcionalidad adicional como una alarma, todo lo que necesita es un poco de imaginación e ingenio. Este proyecto se hizo solo como un trampolín hacia cosas mejores y más complicadas, además, quería hacer algo atractivo para exhibir en mi habitación.

Habiendo dicho lo suficiente, incluiré cada pequeño detalle en esta publicación, incluidos los problemas que encontré al soldarlo en la PCB y cómo resolví estos problemas.

PASO 1:Componentes

Módulo RTC

El chip DS1307 es realmente impresionante, ya que tiene la capacidad de realizar un seguimiento del tiempo incluso durante el tiempo de apagado. Es fácil interactuar con Arduino y hay muchas bibliotecas disponibles para trabajar con este módulo. El RTC interactúa con Arduino a través del protocolo I2C. No se preocupe por los detalles del protocolo, los pines A4 y A5 en el Arduino nano se utilizan para la comunicación I2C.

  • SDA - A4
  • SCL - A5

No necesitaremos el pin DS para este proyecto.

El único inconveniente es que no es tan preciso como nos gustaría. El chip es muy susceptible a la deriva del tiempo y se aleja muy fácilmente del tiempo real dependiendo de la temperatura.

NOTA- Asegúrese de conectar los pines GND y Vcc correctamente. El Vcc se coloca (en el módulo) antes del pin GND. Conecté el mío en la polaridad inversa varias veces y hace mucho calor muy rápido. Por lo tanto, si puede conectar la polaridad en el reverso, simplemente toque la celda de botón cuando la encienda y apáguela rápidamente si siente que se está calentando.

Registro de cambios (74HC595)

  • El registro Shift 74HC595 fue el chip que lo hizo posible gracias a la técnica de multiplexación. Los principiantes no le tengan miedo a este término de aspecto aterrador, es divertido y se alegrarán de haberlo aprendido.
  • El 595 tiene 16 pines y usaremos dos registros de desplazamiento para interactuar con la pantalla de 7 segmentos de 4 dígitos.
  • El primer registro de desplazamiento se utiliza para iluminar los segmentos y el segundo registro de desplazamiento se utiliza para seleccionar qué dígito iluminaré.
  • Gracias a la técnica de multiplexación, la conmutación entre dígitos se realiza de forma muy rápida. Parece que todos los dígitos se muestran al mismo tiempo.

NOTA:Estos chips son bastante confiables, pero tuve varios defectuosos. En algunos chips, Q0 y Q1 no funcionaban. Algunos tenían el Q3 conectado a tierra internamente (error de construcción). Los que tengo en mi proyecto ahora tampoco son del todo perfectos. Uno de ellos tiene su Q7 defectuoso, así que cuando estaba trabajando con ellos tuve que asegurarme de que mis conexiones fueran exactas, y cuando aún no funcionaban, revisé los pines usando la función de continuidad de mi multímetro. En general, no me quejo, ya que todo es un medio para aprender a superar los pequeños obstáculos mientras se hace un proyecto.

Pantalla de siete segmentos de 4 dígitos

He utilizado un segmento genérico de 4 dígitos ( Ánodo común ). Tiene 12 pines, la numeración comienza desde la parte inferior izquierda y termina en el pin superior izquierdo. Cada segmento puede mostrar dígitos y un punto decimal. Entonces, como no tengo los dos puntos de aspecto atractivo típico de los relojes digitales, tuve que conformarme con el punto decimal del segundo dígito. Estas son excelentes pantallas cuando su objetivo principal es mostrar números.

NOTA:Estos pueden ser bastante difíciles de trabajar para principiantes, ya que los segmentos a-g no están en la misma línea. Tenga cuidado y no los conecte a la fuente de 5v sin ninguna resistencia limitadora de corriente.

He incluido un esquema para esto y se explica por sí mismo.

El esquema no tiene el mismo tipo de pantalla que usé en el proyecto, así que aquí están las conexiones de los pines del registro de desplazamiento al segmento.

Segmento Pin no. en la pantalla Shift registro pin

A 11 15

B 7 1

C 4 2

D 2 3

E 1 4

F 10 5

G 5 6

Decimal 3 7

D1 12 15 (segundo 595)

D2 9 1 (segundo 595)

D3 8 2 (segundo 595)

D4 6 3 (segundo 595)

Este proyecto es barato y fácil de hacer, pero requiere un poco de paciencia y perseverancia (es decir, si está dispuesto a hacer un esfuerzo adicional para soldarlo en la PCB). Si solo quieres probarlo por diversión, apenas te llevará 2 horas.

Por favor, envíenos sus comentarios sobre cómo puedo mejorar esto y si hay algo que no se haya mencionado claramente en la publicación.

Código

  • Código de reloj
  • Establecer la hora
  • RealTimeClockDS1307.cpp
  • Léame
  • RealTimeClockDS1307.h
  • otro archivo
  • Archivos RTClib
  • library.properties (nombre)
  • RTClib
  • RTClib
  • README.md
  • RTClib.cpp
  • RTClib.h
Código de reloj Arduino
El código usa la biblioteca RTC y la biblioteca I2C. Necesita estas bibliotecas para que se ejecute el programa. Este programa es para la visualización del tipo de ánodo común.
 #include  #include  #include  RTC_DS1307 RTC; int temp, inc, hours1, minut, add =11; int HORA, MINUTO, SEGUNDO; int latchPin =3; // pin 12 en el 595 o3 3int dataPin =4; // pin 14 en el 595 o 4int clockPin =2; // pin 11 en el 595 o 2int shift =256; int unidades, decenas, centenas, miles; int x; int y; const int alarmHour =17; const int alarmMinute =26; void setup () {Serial.begin (9600 ); pinMode (latchPin, SALIDA); pinMode (dataPin, SALIDA); pinMode (clockPin, SALIDA); pinMode (13, SALIDA); Wire.begin (); RTC.begin (); if (! RTC.isrunning ()) {RTC.adjust (DateTime (__ DATE__, __TIME__)); }} bucle vacío () {int temp =0, val =1, temp4; DateTime ahora =RTC.now (); HORA =ahora.hora (); MINUT =ahora.minuto (); //Serial.println(MINUT); si (HORA <10) {centenas =HORA; miles =HORA / 10; } más si (HORA> =10 &&HORA <24) {centenas =HORA% 10; miles =HORA / 10; } si (MINUTO <=9) {unidades =MINUTO; decenas =MINUTO / 10; } más si (MINUTO> 9 &&MINUT <=60) {unidades =MINUT% 10; decenas =MINUTO / 10; } cambiar (unidades) {caso 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 192); digitalWrite (latchPin, HIGH); descanso; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 249); digitalWrite (latchPin, HIGH); descanso; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 164); digitalWrite (latchPin, HIGH); descanso; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 176); digitalWrite (latchPin, HIGH); descanso; caso 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 153); digitalWrite (latchPin, HIGH); descanso; caso 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 146); digitalWrite (latchPin, HIGH); descanso; caso 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 130); digitalWrite (latchPin, HIGH); descanso; caso 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 248); digitalWrite (latchPin, HIGH); descanso; caso 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 128); digitalWrite (latchPin, HIGH); descanso; caso 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 8 + 144); digitalWrite (latchPin, HIGH); descanso; } retraso (1); switch (decenas) {caso 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 192); digitalWrite (latchPin, HIGH); descanso; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 249); digitalWrite (latchPin, HIGH); descanso; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 164); digitalWrite (latchPin, HIGH); descanso; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 176); digitalWrite (latchPin, HIGH); descanso; caso 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 153); digitalWrite (latchPin, HIGH); descanso; caso 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 4 + 146); digitalWrite (latchPin, HIGH); descanso; } retraso (1); cambiar (cientos) {caso 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 64); digitalWrite (latchPin, HIGH); descanso; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 121); digitalWrite (latchPin, HIGH); descanso; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 36); digitalWrite (latchPin, HIGH); descanso; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 48); digitalWrite (latchPin, HIGH); descanso; caso 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 25); digitalWrite (latchPin, HIGH); descanso; caso 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 18); digitalWrite (latchPin, HIGH); descanso; caso 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 2); digitalWrite (latchPin, HIGH); descanso; caso 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 120); digitalWrite (latchPin, HIGH); descanso; caso 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 0); digitalWrite (latchPin, HIGH); descanso; caso 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift * 2 + 16); digitalWrite (latchPin, HIGH); descanso; } retraso (1); cambiar (miles) {caso 0:// 0 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 192); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 1:// 1 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 249); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 2:// 2 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 164); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 3:// 3 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 176); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 4:// 4 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 153); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 5:// 5 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 146); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 6:// 6 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 130); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 7:// 7 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 248); digitalWrite (latchPin, HIGH); // retraso (500); descanso; caso 8:// 8 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 128); digitalWrite (latchPin, HIGH); descanso; caso 9:// 9 digitalWrite (latchPin, LOW); shiftOut (dataPin, clockPin, MSBFIRST, shift>> 8); shiftOut (dataPin, clockPin, MSBFIRST, shift + 152); digitalWrite (latchPin, HIGH); descanso; } retraso (1); // sección de alarma if (HORA ==hora de alarma &&MINUT ==alarmaMinuto) {digitalWrite (13, HIGH); } else {digitalWrite (13, BAJO); }} 
Establecer la hora Arduino
ya que el ds1307 es susceptible de desviarse de la hora correcta. Este programa le permite configurar la hora a través del Monitor de serie. Cuando vea que la hora no es correcta, simplemente conecte el módulo rtc en el arduino y cargue este programa. Luego ingrese al Monitor serial y luego configure la fecha, mes, año y hora correctos. Luego, simplemente cargue el otro programa y la hora correcta se mostrará en la pantalla de 7 segmentos.
 / * RealTimeClockDS1307 - biblioteca para controlar un módulo DS1307 RTC Copyright (c) 2011 David H. Brown. Todos los derechos reservados Muchas gracias a John Waters y Maurice Ribble por su trabajo anterior y muy útil (incluso si no terminé usando ninguno de sus códigos):- http://combustory.com/wiki/index.php/RTC1307_ -_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Esta biblioteca es un software gratuito; puede redistribuirlo y / o modificarlo según los términos de la Licencia Pública General Reducida GNU publicada por la Free Software Foundation; ya sea la versión 2.1 de la Licencia o (a su elección) cualquier versión posterior. Esta biblioteca se distribuye con la esperanza de que sea útil, pero SIN NINGUNA GARANTÍA; incluso sin la garantía implícita de COMERCIABILIDAD o APTITUD PARA UN PROPÓSITO PARTICULAR. Consulte la Licencia pública general reducida de GNU para obtener más detalles. Debería haber recibido una copia de la Licencia Pública General Reducida GNU junto con esta biblioteca; si no es así, escriba a Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * / # include  #include  // RealTimeClock RTC; // =new RealTimeClock (); # define Display_Clock_Every_N_Seconds 1 # define Display_ShortHelp_Every_N_Seconds 25 // # define TEST_Squarewave // ​​# define TEST_StopStart // # define TEST_1224Switchint count =0; char formateado [] ="00-00-00 00:00:00x"; void setup () {// Wire.begin (); Serial.begin (9600);} void loop () {if (Serial.available ()) {processCommand (); } retraso (1000); RTC.readClock (); contar ++; if (cuenta% Display_Clock_Every_N_Seconds ==0) {Serial.print (cuenta); Serial.print (":"); RTC.getFormatted (formateado); Serial.print (formateado); Serial.println (); } if (count% Display_ShortHelp_Every_N_Seconds ==0) {Serial.println ("¿Enviar? para obtener una lista de comandos."); } #ifdef TEST_Squarewaveif (count% 10 ==0) {switch (count / 10% 6) {case 0:Serial.print ("Squarewave disabled (low impedancia):"); RTC.sqwDisable (0); Serial.println ((int) RTC.readData (7)); descanso; caso 1:Serial.print ("Squarewave desactivado (alta impedancia):"); RTC.sqwDisable (1); Serial.println ((int) RTC.readData (7)); descanso; caso 2:Serial.println ("Onda cuadrada habilitada a 1 Hz"); RTC.sqwEnable (RTC.SQW_1Hz); descanso; caso 3:Serial.println ("Onda cuadrada habilitada a 4.096 kHz"); RTC.sqwEnable (RTC.SQW_4kHz); descanso; caso 4:Serial.println ("Onda cuadrada habilitada a 8.192 kHz"); RTC.sqwEnable (RTC.SQW_8kHz); descanso; caso 5:Serial.println ("Onda cuadrada habilitada a 32,768 kHz"); RTC.sqwEnable (RTC.SQW_32kHz); descanso; predeterminado:Serial.println ("Prueba de onda cuadrada no definida"); } // switch} # endif # ifdef TEST_StopStartif (count% 10 ==0) {if (! RTC.isStopped ()) {if (RTC.getSeconds () <45) {Serial.println ("Deteniendo el reloj durante 10 segundos "); RTC.stop (); } // si tenemos suficiente tiempo} else {RTC.setSeconds (RTC.getSeconds () + 11); RTC.start (); Serial.println ("Añadiendo 11 segundos y reiniciando el reloj"); }} // si en un múltiplo de 10 conteos # endif # ifdef TEST_1224Switch if (count% 10 ==0) {if (count% 20 ==0) {Serial.println ("cambiando al tiempo de 12 horas"); RTC.switchTo12h (); RTC.setClock (); } else {Serial.println ("cambiar a formato de 24 horas"); RTC.switchTo24h (); RTC.setClock (); }} #endif} void processCommand () {if (! Serial.available ()) {return; } char command =Serial.read (); int in, in2; cambiar (comando) {caso 'H':caso 'h':in =SerialReadPosInt (); RTC.setHours (pulgadas); RTC.setClock (); Serial.print ("Establecer horas en"); Serial.println (en); descanso; caso 'I':caso 'i':in =SerialReadPosInt (); RTC.setMinutes (en); RTC.setClock (); Serial.print ("Establecer minutos en"); Serial.println (en); descanso; caso 'S':caso 's':in =SerialReadPosInt (); RTC.setSeconds (en); RTC.setClock (); Serial.print ("Establecer segundos en"); Serial.println (en); descanso; caso 'Y':caso 'y':in =SerialReadPosInt (); RTC.setYear (pulgadas); RTC.setClock (); Serial.print ("Estableciendo año en"); Serial.println (en); descanso; caso 'M':caso 'm':in =SerialReadPosInt (); RTC.setMonth (pulgadas); RTC.setClock (); Serial.print ("Establecer mes en"); Serial.println (en); descanso; caso 'D':caso 'd':in =SerialReadPosInt (); RTC.setDate (en); RTC.setClock (); Serial.print ("Establecer fecha en"); Serial.println (en); descanso; case 'W':Serial.print ("El día de la semana es"); Serial.println ((int) RTC.getDayOfWeek ()); descanso; caso 'w':in =SerialReadPosInt (); RTC.setDayOfWeek (en); RTC.setClock (); Serial.print ("Establecer día de la semana en"); Serial.println (en); descanso; caso 't':caso 'T':if (RTC.is12hour ()) {RTC.switchTo24h (); Serial.println ("Cambio al reloj de 24 horas"); } else {RTC.switchTo12h (); Serial.println ("Cambio al reloj de 12 horas"); } RTC.setClock (); descanso; caso 'A':caso 'a':if (RTC.is12hour ()) {RTC.setAM (); RTC.setClock (); Serial.println ("Establecer AM."); } else {Serial.println ("(Establecer horas solo en modo de 24 horas)"); } descanso; caso 'P':caso 'p':if (RTC.is12hour ()) {RTC.setPM (); RTC.setClock (); Serial.println ("Establecer PM."); } else {Serial.println ("(Establecer horas solo en modo de 24 horas)"); } descanso; caso 'q':RTC.sqwEnable (RTC.SQW_1Hz); Serial.println ("Salida de onda cuadrada ajustada a 1Hz"); descanso; caso 'Q':RTC.sqwDisable (0); Serial.println ("Salida de onda cuadrada desactivada (baja)"); descanso; caso 'z':RTC.start (); Serial.println ("Se inició el oscilador de reloj."); descanso; caso 'Z':RTC.stop (); Serial.println ("Se detuvo el oscilador de reloj"); descanso; caso '>':en =SerialReadPosInt (); in2 =SerialReadPosInt (); RTC.writeData (en, en2); Serial.print ("Escribir para registrar"); Serial.print (pulgadas); Serial.print ("el valor"); Serial.println (in2); descanso; caso '<':en =SerialReadPosInt (); in2 =RTC.readData (en); Serial.print ("Leer desde el registro"); Serial.print (pulgadas); Serial.print ("el valor"); Serial.println (in2); descanso; predeterminado:Serial.println ("Comando desconocido. Pruebe estos:"); Serial.println ("h ## - establecer horas d ## - establecer fecha"); Serial.println ("i ## - establecer minutos m ## - establecer mes"); Serial.println ("s ## - establecer segundos y ## - establecer año"); Serial.println ("w ## - establecer un día arbitrario de la semana"); Serial.println ("t - alternar el modo de 24 horas"); Serial.println ("a - establecer AM p - establecer PM"); Serial.println (); Serial.println ("z - iniciar el reloj Z - detener el reloj"); Serial.println ("q - SQW / OUT =1Hz Q - detener SQW / OUT"); Serial.println (); Serial.println ("> ##, ### - escribir en el registro ## el valor ###"); Serial.println ("<## - leer el valor en el registro ##"); } // activar el comando} // leer en caracteres numéricos hasta que haya algo más // o no haya más datos disponibles en serial.int SerialReadPosInt () {int i =0; booleano hecho =falso; while (Serial.available () &&! done) {char c =Serial.read (); if (c> ='0' &&c <='9') {i =i * 10 + (c-'0 '); } más {hecho =verdadero; }} return i;} 
RealTimeClockDS1307.cpp C / C ++
Este es uno de los archivos de la biblioteca del reloj de tiempo real. Cree una carpeta llamada "RealTimeClockDS1307" y cópiela en esta carpeta. Eso es todo lo que tienes que hacer. No es necesario compilarlo.
 / * RealTimeClockDS1307 - biblioteca para controlar un módulo DS1307 RTC Copyright (c) 2011 David H. Brown. Todos los derechos reservados v0.92 Actualizado para Arduino 1.00; no se volvió a probar en versiones anteriores Muchas gracias a John Waters y Maurice Ribble por su trabajo anterior y muy útil (incluso si no terminé usando ninguno de sus códigos):- http://combustory.com/wiki/index .php / RTC1307 _-_ Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 Esta biblioteca es un software gratuito; puede redistribuirlo y / o modificarlo según los términos de la Licencia Pública General Reducida GNU publicada por la Free Software Foundation; ya sea la versión 2.1 de la Licencia o (a su elección) cualquier versión posterior. Esta biblioteca se distribuye con la esperanza de que sea útil, pero SIN NINGUNA GARANTÍA; incluso sin la garantía implícita de COMERCIABILIDAD o APTITUD PARA UN PROPÓSITO PARTICULAR. Consulte la Licencia pública general reducida de GNU para obtener más detalles. Debería haber recibido una copia de la Licencia Pública General Reducida GNU junto con esta biblioteca; si no es así, escriba a Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * / / ******************** *********************************************** ******** * Incluye ************************************** ************************************* / # include "RealTimeClockDS1307.h" #include  / ******************************************** ******************************** * Definiciones **************** *********************************************** ************ / # define DS1307_I2C_ADDRESS 0x68 // Esta es la dirección I2C / ************************ *********************************************** *** * Constructores ******************************************* ********************************* / RealTimeClockDS1307 ::RealTimeClockDS1307 () {Wire.begin (); // NO debe intentar leer el reloj antes de que //Wire.begin () no haya sido llamado; readClock () se bloqueará. // Afortunadamente, parece que puedes llamar a Wire.begin () // varias veces sin ningún efecto adverso).} / ********************** *********************************************** ***** * API de usuario **************************************** *********************************** // ***** CHIP LEER / ESCRIBIR *** *** / void RealTimeClockDS1307 ::readClock () {// Restablecer el puntero de registro Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x00); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read (); _reg1_min =Wire.read (); _reg2_hour =Wire.read (); _reg3_day =Wire.read (); _reg4_date =Wire.read (); _reg5_month =Wire.read (); _reg6_year =Wire.read (); _reg7_sqw =Wire.read ();} void RealTimeClockDS1307 ::setClock () {// para ser paranoicos, primero vamos a detener el reloj // para asegurarnos de que no tengamos reinversiones mientras escribimos:// writeData (0,0x80); // ahora, escribiremos todo * excepto * el segundo Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write ((uint8_t) 0x01); Wire.write (_reg1_min); Wire.write (_reg2_hour); Wire.write (_reg3_day); Wire.write (_reg4_date); Wire.write (_reg5_month); Wire.write (_reg6_year); Wire.endTransmission (); // ahora, escribiremos los segundos; no tuvimos que hacer un // seguimiento de si el reloj ya estaba funcionando, porque // _ reg0_sec ya sabe lo que queremos que sea. Esto // reiniciará el reloj mientras escribe el nuevo valor de segundos. writeData (0, _reg0_sec); } void RealTimeClockDS1307 ::stop () {// "El bit 7 del registro 0 es el bit de detención del reloj (CH). // Cuando este bit se establece en 1, el oscilador está deshabilitado". _reg0_sec =_reg0_sec | 0x80; writeData (0, _reg0_sec);} void RealTimeClockDS1307 ::start () {// "El bit 7 del registro 0 es el bit de detención del reloj (CH). // Cuando este bit se establece en 1, el oscilador está deshabilitado". _reg0_sec =_reg0_sec &~ 0x80; writeData (0, _reg0_sec);} void RealTimeClockDS1307 ::writeData (byte regNo, byte value) {if (regNo> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.write (valor); Wire.endTransmission ();} void RealTimeClockDS1307 ::writeData (byte regNo, void * source, int length) {char * p =(char *) source; if (regNo> 0x3F || longitud> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); para (int i =0; i  0x3F) {return 0xff; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, 1); return Wire.read ();} void RealTimeClockDS1307 ::readData (byte regNo, void * dest, int length) {char * p =(char *) dest; if (regNo> 0x3F || longitud> 0x3F) {return; } Wire.beginTransmission (DS1307_I2C_ADDRESS); Wire.write (regNo); Wire.endTransmission (); Wire.requestFrom (DS1307_I2C_ADDRESS, longitud); para (int i =0; i  3) {retorno; } // el bit 4 es habilitado (0x10); // el bit 7 es el estado de salida actual si está desactivado _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frecuencia; writeData (0x07, _reg7_sqw);} void RealTimeClockDS1307 ::sqwDisable (boolean outputLevel) {// bit 7 0x80 salida + bit 4 0x10 habilita ambos a cero, // el OR con el booleano desplazado hasta el bit 7 _reg7_sqw =_reg7_sqw &~ 0x90 | (outputLevel <<7); writeData (0x07, _reg7_sqw); // nota:según la hoja de datos, "OUT (control de salida):este bit controla // el nivel de salida del pin SQW / OUT cuando la salida de onda cuadrada // está deshabilitada. Si SQWE =0, el nivel lógico en el // El pin SQW / OUT es 1 si OUT =1 y es 0 si OUT =0. " // "El pin SQW / OUT es de drenaje abierto y requiere una // resistencia de extracción externa". // Vale la pena mencionar que en la placa de ruptura Sparkfun, // BOB-00099, un LED conectado al pin SQW a través de una resistencia a // Vcc + 5V se iluminó cuando OUT =0 y estaba oscuro cuando OUT =1, el / / lo contrario de lo que esperaba hasta que recordé que es // un desagüe abierto (búscalo en Google si es necesario). Básicamente, no // significan tanto un nivel lógico (por ejemplo, + 3.3V rel Gnd) como significa // alta o baja * impedancia * a tierra (drenaje). So High es básicamente // un interruptor abierto. Baja se conecta a tierra.} / ***** GETTERS ****** / boolean RealTimeClockDS1307 ::is12hour () {// El modo de 12 horas tiene el bit 6 del registro de horas establecido de retorno alto ((_reg2_hour &0x40) ==0x40);} boolean RealTimeClockDS1307 ::isPM () {// si está en modo de 12 horas, pero 5 del registro de horas indica PM if (is12hour ()) {return ((_reg2_hour &0x20) ==0x20); } // de lo contrario, consideremos cualquier momento con la hora> 11 como PM:return (getHours ()> 11);} boolean RealTimeClockDS1307 ::isStopped () {// el bit 7 del registro de segundos detiene el reloj cuando el retorno es alto ((_reg0_sec &0x80) ==0x80);} int RealTimeClockDS1307 ::getHours () {if (is12hour ()) {// no incluya el bit 5, el indicador am / pm devuelve bcdToDec (_reg2_hour &0x1f); } //bits 4-5 are tens of hours return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //could mask with 0x7f but shouldn't need to return bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //need to mask oscillator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ //could mask with 0x1f but shouldn't need to return bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //could mask with 0x3f but shouldn't need to return bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay(){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
ReadmeClojure
Copy this also into the same folder you created named "RealTimeClockDS1307".
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RealTimeClockDS1307.hC/C++
This is the main header file of the real time clock. Copy this also into the folder you previously created named "RealTimeClockDS1307". Now you have all the files for the Real Time Clock. Enter the arduino ide and under the 'Sketch' menu click on the 'include library' option and then search your folder under the 'Add .ZIP Library". This will do the trick and you will now be able to set the time in the RTC module.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
another fileC/C++
add this to the 'RealTimeClockDS1307' folder.
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
RTClib filesC#
create a folder named 'RTClib' and add the following files into it
########################################## Syntax Coloring Map RealTimeClockDS1307################################################################################# Instances (KEYWORD2)#######################################RTC KEYWORD2########################################## Methods and Functions (KEYWORD2)#########################################readClock KEYWORD2setClock KEYWORD2stop KEYWORD2start KEYWORD2sqwEnable KEYWORD2sqwDisable KEYWORD2writeData KEYWORD2readData KEYWORD2getHours KEYWORD2getMinutes KEYWORD2getSeconds KEYWORD2getYear KEYWORD2getMonth KEYWORD2getDate KEYWORD2getDay KEYWORD2getDayOfWeek KEYWORD2is12hour KEYWORD2isPM KEYWORD2isStopped KEYWORD2getFormatted KEYWORD2getFormatted2k KEYWORD2setSeconds KEYWORD2setMinutes KEYWORD2setHours KEYWORD2setAM KEYWORD2setPM KEYWORD2set24h KEYWORD2switchTo24h KEYWORD2switchTo12h KEYWORD2setDayOfWeek KEYWORD2setDate KEYWORD2setDay KEYWORD2setMonth KEYWORD2setYear KEYWORD2########################################## Constants (LITERAL1)#########################################SQW_1Hz LITERAL1SQW_4kHz LITERAL1SQW_8kHz LITERAL1SQW_32kHz LITERAL1
library.properties(name)C/C++
add this to the RTClib folder
My goal in creating yet another DS1307 library was to provideeasy access to some of the other functions I needed from the chip,specifically its square wave output and its battery-backed RAM.## Documentation@todo Mostly comments in `RealTimeClockDS1307.h`## Examples (in /examples folder)- `RealTimeClockDS1307_Test.pde` allow you to turn the clock on/off,set date/time, set 12/24h, [de]activate the square wave, andread/write memory from the Serial Monitor.- `RealTimeClockDS1307.fz` is a Fritzing breadboard layout showingthe basic hookup of the Sparkfun RTC module to an Arduino. Includedis an optional resistor+LED to show the square wave (note that it'san open drain, so you hook up to it rather differently than, say, pin 13).## Changelog##### Version 0.95* Reverse renaming of getDate() and setDate(), now getDay() is calling getDate() and setDay() is calling setDate()* Readme improvements##### Version 0.94* changed getDate() to getDay() and setDate() to setDay()* updated keywords.txt* updated example##### Version 0.93* added keywords.txt for syntax highlighting##### Version 0.92 RC* Updated for Arduino 1.00; testing with Andreas Giemza (hurik)##### Version 0.91* added multi-byte read/write##### Version 0.9 RC* initial release## Future - web page documentation## CreditsMuch thanks to John Waters and Maurice Ribble for theirearlier and very helpful work (even if I didn't wind upusing any of their code):- [http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock](http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock)- [http://www.glacialwanderer.com/hobbyrobotics/?p=12](http://www.glacialwanderer.com/hobbyrobotics/?p=12)## CopyrightRealTimeClockDS1307 - library to control a DS1307 RTC moduleCopyright (c) 2011 David H. Brown. All rights reserved## License This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
RTClibC/C++
add this to the RTClib folder
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/ /****************************************************************************** * Includes ******************************************************************************/#include "RealTimeClockDS1307.h"#include /****************************************************************************** * Definitions ******************************************************************************/#define DS1307_I2C_ADDRESS 0x68 // This is the I2C address/****************************************************************************** * Constructors ******************************************************************************/RealTimeClockDS1307::RealTimeClockDS1307(){ Wire.begin(); //must NOT attempt to read the clock before //Wire.begin() has not been called; readClock() will hang. //Fortunately, it seems that you can call Wire.begin() //multiple times with no adverse effect).} /****************************************************************************** * User API ******************************************************************************//***** CHIP READ/WRITE ******/void RealTimeClockDS1307::readClock(){ // Reset the register pointer Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x00); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, 8); _reg0_sec =Wire.read(); _reg1_min =Wire.read(); _reg2_hour =Wire.read(); _reg3_day =Wire.read(); _reg4_date =Wire.read(); _reg5_month =Wire.read(); _reg6_year =Wire.read(); _reg7_sqw =Wire.read();}void RealTimeClockDS1307::setClock(){ //to be paranoid, we're going to first stop the clock //to ensure we don't have rollovers while we're //writing:writeData(0,0x80); //now, we'll write everything *except* the second Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write((uint8_t) 0x01); Wire.write(_reg1_min); Wire.write(_reg2_hour); Wire.write(_reg3_day); Wire.write(_reg4_date); Wire.write(_reg5_month); Wire.write(_reg6_year); Wire.endTransmission (); //now, we'll write the seconds; we didn't have to keep //track of whether the clock was already running, because //_reg0_sec already knows what we want it to be. This //will restart the clock as it writes the new seconds value. writeData(0,_reg0_sec); }void RealTimeClockDS1307::stop(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec | 0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::start(){ //"Bit 7 of register 0 is the clock halt (CH) bit. //When this bit is set to a 1, the oscillator is disabled." _reg0_sec =_reg0_sec &~0x80; writeData(0,_reg0_sec);}void RealTimeClockDS1307::writeData(byte regNo, byte value){ if(regNo> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.write(value); Wire.endTransmission();}void RealTimeClockDS1307::writeData(byte regNo, void * source, int length){ char * p =(char*) source; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); for(int i=0; i 0x3F) { return 0xff; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, 1); return Wire.read();}void RealTimeClockDS1307::readData(byte regNo, void * dest, int length){ char * p =(char*) dest; if(regNo> 0x3F || length> 0x3F) { return; } Wire.beginTransmission(DS1307_I2C_ADDRESS); Wire.write(regNo); Wire.endTransmission (); Wire.requestFrom(DS1307_I2C_ADDRESS, length); for(int i=0; i 3) { return; } //bit 4 is enable (0x10); //bit 7 is current output state if disabled _reg7_sqw =_reg7_sqw &0x80 | 0x10 | frequency; writeData(0x07, _reg7_sqw);}void RealTimeClockDS1307::sqwDisable(boolean outputLevel){ //bit 7 0x80 output + bit 4 0x10 enable both to zero, //the OR with the boolean shifted up to bit 7 _reg7_sqw =_reg7_sqw &~0x90 | (outputLevel <<7); writeData(0x07, _reg7_sqw); //note:per the data sheet, "OUT (Output control):This bit controls //the output level of the SQW/OUT pin when the square wave //output is disabled. If SQWE =0, the logic level on the //SQW/OUT pin is 1 if OUT =1 and is 0 if OUT =0." //"The SQW/OUT pin is open drain and requires an external //pull-up resistor." //It is worth mentioning that on the Sparkfun breakout board, //BOB-00099, a LED connected to the SQW pin through a resistor to //Vcc+5V illuminated when OUT=0 and was dark when OUT=1, the //opposite of what I expected until I remembered that it is //an open drain (google it if you need to). Basically, they don't //so much mean a logic level (e.g., +3.3V rel Gnd) as they mean //high or low *impeadance* to ground (drain). So High is basically //an open switch. Low connects to ground.}/***** GETTERS ******/boolean RealTimeClockDS1307::is12hour() { //12-hour mode has bit 6 of the hour register set high return ((_reg2_hour &0x40) ==0x40);}boolean RealTimeClockDS1307::isPM(){ //if in 12-hour mode, but 5 of the hour register indicates PM if(is12hour()) { return ((_reg2_hour &0x20) ==0x20); } //otherwise, let's consider any time with the hour>11 to be PM:return (getHours()> 11);}boolean RealTimeClockDS1307::isStopped(){ //bit 7 of the seconds register stopps the clock when high return ((_reg0_sec &0x80) ==0x80);}int RealTimeClockDS1307::getHours(){ if(is12hour()) { //do not include bit 5, the am/pm indicator return bcdToDec(_reg2_hour &0x1f); } //bits 4-5 are tens of hours return bcdToDec(_reg2_hour &0x3f);}int RealTimeClockDS1307::getMinutes(){ //could mask with 0x7f but shouldn't need to return bcdToDec(_reg1_min);}int RealTimeClockDS1307::getSeconds(){ //need to mask oscillator start/stop bit 7 return bcdToDec(_reg0_sec &0x7f);}int RealTimeClockDS1307::getYear(){ return bcdToDec(_reg6_year);}int RealTimeClockDS1307::getMonth(){ //could mask with 0x1f but shouldn't need to return bcdToDec(_reg5_month);}int RealTimeClockDS1307::getDate(){ //could mask with 0x3f but shouldn't need to return bcdToDec(_reg4_date);}int RealTimeClockDS1307::getDay(){ return getDate();}int RealTimeClockDS1307::getDayOfWeek(){ //could mask with 0x07 but shouldn't need to return bcdToDec(_reg3_day);}void RealTimeClockDS1307::getFormatted(char * buffer){ int i=0; //target string format:YY-MM-DD HH:II:SS buffer[i++]=highNybbleToASCII(_reg6_year); buffer[i++]=lowNybbleToASCII(_reg6_year); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg5_month &0x1f); buffer[i++]=lowNybbleToASCII(_reg5_month); buffer[i++]='-'; buffer[i++]=highNybbleToASCII(_reg4_date &0x3f); buffer[i++]=lowNybbleToASCII(_reg4_date); buffer[i++]=' '; if(is12hour()) { buffer[i++]=highNybbleToASCII(_reg2_hour &0x1f); } else { buffer[i++]=highNybbleToASCII(_reg2_hour &0x3f); } buffer[i++]=lowNybbleToASCII(_reg2_hour); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg1_min &0x7f); buffer[i++]=lowNybbleToASCII(_reg1_min); buffer[i++]=':'; buffer[i++]=highNybbleToASCII(_reg0_sec &0x7f); buffer[i++]=lowNybbleToASCII(_reg0_sec); if(is12hour()) { if(isPM()) { buffer[i++]='P'; } else { buffer[i++]='A'; } } buffer[i++]=0x00;}void RealTimeClockDS1307::getFormatted2k(char * buffer){ buffer[0]='2'; buffer[1]='0'; getFormatted(&buffer[2]);}/**** SETTERS *****/void RealTimeClockDS1307::setSeconds(int s){ if (s <60 &&s>=0) { //need to preserve oscillator bit _reg0_sec =decToBcd(s) | (_reg0_sec &0x80); }}void RealTimeClockDS1307::setMinutes(int m){ if (m <60 &&m>=0) { _reg1_min =decToBcd(m); }}void RealTimeClockDS1307::setHours(int h){ if (is12hour()) { if (h>=1 &&h <=12) { //preserve 12/24 and AM/PM bits _reg2_hour =decToBcd(h) | (_reg2_hour &0x60); } } else { if (h>=0 &&h <=24) { //preserve 12/24 bit _reg2_hour =decToBcd(h) | (_reg2_hour &0x40); } }//else}//setHoursvoid RealTimeClockDS1307::set24h(){ //"Bit 6 of the hours register is defined as the //"12- or 24-hour mode select bit. //"When high, the 12-hour mode is selected" //So, mask the curent value with the complement turn off that bit:_reg2_hour =_reg2_hour &~0x40; }void RealTimeClockDS1307::setAM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 to set 12-hour mode and also //turn off the PM bit by masking with the complement _reg2_hour =_reg2_hour &~0x20 | 0x40;}void RealTimeClockDS1307::setPM(){ //"In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM" //so we need to OR with 0x40 and 0x20 to set 12-hour mode and also //turn on the PM bit:_reg2_hour =_reg2_hour | 0x60;}void RealTimeClockDS1307::switchTo12h(){ if(is12hour()) { return; } int h =getHours(); if (h <12) { setAM(); } else { h =h-12; setPM(); } if (h==0) { h=12; } setHours(h);}void RealTimeClockDS1307::switchTo24h(){ if(!is12hour()) { return; } int h =getHours(); if(h==12) {//12 PM is just 12; 12 AM is 0 hours. h =0; } if (isPM()) {//if it was 12 PM, then h=0 above and so we're back to 12:h =h+12; } set24h(); setHours(h);}void RealTimeClockDS1307::setDayOfWeek(int d){ if (d> 0 &&d <8) { _reg3_day =decToBcd(d); }}void RealTimeClockDS1307::setDate(int d){ if (d> 0 &&d <32) { _reg4_date =decToBcd(d); }}void RealTimeClockDS1307::setDay(int d){ setDate(d);}void RealTimeClockDS1307::setMonth(int m){ if (m> 0 &&m <13) { _reg5_month =decToBcd(m); }}void RealTimeClockDS1307::setYear(int y){ if (y>=0 &&y <100) { _reg6_year =decToBcd(y); }}/***************************************** * Private methods *****************************************/byte RealTimeClockDS1307::decToBcd(byte b){ return ( ((b/10) <<4) + (b%10) );}// Convert binary coded decimal to normal decimal numbersbyte RealTimeClockDS1307::bcdToDec(byte b){ return ( ((b>> 4)*10) + (b%16) );}char RealTimeClockDS1307::lowNybbleToASCII(byte b) { b =b &0x0f; if(b <10) { //0 is ASCII 48 return 48+b; } //A is ASCII 55 return 55+b;}char RealTimeClockDS1307::highNybbleToASCII(byte b){ return lowNybbleToASCII(b>> 4);}/***** INSTANCE *******/RealTimeClockDS1307 RTC =RealTimeClockDS1307();
RTClibC/C++
add this to the RTClib folder. Now you have all the necessary files for the RTClib. Now do the same as I told you with the 'RealTimeClockDS1307' library file.
/* RealTimeClockDS1307 - library to control a DS1307 RTC module Copyright (c) 2011 David H. Brown. All rights reserved v0.92 Updated for Arduino 1.00; not re-tested on earlier versions Much thanks to John Waters and Maurice Ribble for their earlier and very helpful work (even if I didn't wind up using any of their code):- http://combustory.com/wiki/index.php/RTC1307_-_Real_Time_Clock - http://www.glacialwanderer.com/hobbyrobotics/?p=12 This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA*/#ifndef RealTimeClockDS1307_h#define RealTimeClockDS1307_h #if defined(ARDUINO) &&ARDUINO>=100 #include "Arduino.h" #else #include "WProgram.h" #endif//#include //#include  //need/want 'boolean' and 'byte' types used by Arduino//#undef round is required to avoid a compile-time//"expected unqualified-id before 'double'" error in math.h//see:http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1247924528/3#undef round #include #define ARDUINO_PIN_T uint8_tclass RealTimeClockDS1307{ private:byte _reg0_sec; byte _reg1_min; byte _reg2_hour; byte _reg3_day; byte _reg4_date; byte _reg5_month; byte _reg6_year; byte _reg7_sqw; byte decToBcd(byte); byte bcdToDec(byte); char lowNybbleToASCII(byte); char highNybbleToASCII(byte); public:RealTimeClockDS1307(); void readClock();//read registers (incl sqw) to local store void setClock();//update clock registers from local store void stop();//immediate; does not require setClock(); void start();//immediate; does not require setClock(); void sqwEnable(byte);//enable the square wave with the specified frequency void sqwDisable(boolean);//disable the square wave, setting output either high or low void writeData(byte, byte);//write a single value to a register void writeData(byte, void *, int);//write several values consecutively byte readData(byte);//read a single value from a register void readData(byte, void *, int);//read several values into a buffer int getHours(); int getMinutes(); int getSeconds(); int getYear(); int getMonth(); int getDate(); int getDay(); int getDayOfWeek(); boolean is12hour(); boolean isPM(); boolean isStopped(); //getFormatted writes into a char array provided by you. Format is:// YY-MM-DD HH:II:SS ... plus "A" or "P" if in 12-hour mode //and of course a NULL terminator. So, [18] for 24h or [19] for 12h void getFormatted(char *);//see comment above void getFormatted2k(char *);//as getFormatted, but with "20" prepended //must also call setClock() after any of these //before next readClock(). Note that invalid dates are not //corrected by the clock. All the clock knows is when it should //roll over to the next month rather than the next date in the same month. void setSeconds(int); void setMinutes(int); //setHours rejects values out of range for the current 12/24 mode void setHours(int); void setAM();//does not consider hours; see switchTo24() void setPM();//does not consider hours; see switchTo24() void set24h();//does not consider hours; see switchTo24() void switchTo24h();//returns immediately if already 24h void switchTo12h();//returns immediately if already 12h void setDayOfWeek(int);//incremented at midnight; not set by date (no fixed meaning) void setDate(int);//allows 1-31 for *all* months. void setDay(int); void setMonth(int); void setYear(int); //squarewave frequencies:static const byte SQW_1Hz=0x00; static const byte SQW_4kHz=0x01;//actually 4.096kHz static const byte SQW_8kHz=0x02;//actually 8.192kHz static const byte SQW_32kHz=0x03;//actually 32.768kHz};extern RealTimeClockDS1307 RTC;#endif
README.mdC/C++
add this to the RTClib library
This is a fork of JeeLab's fantastic real time clock library for Arduino.For details on using this library with an RTC module like the DS1307, see the guide at:https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overviewTo download. click the DOWNLOADS button to the right, and rename the uncompressed folder RTClib.Place the RTClib folder in your *arduinosketchfolder*/libraries/ folder. You may need to create the libraries subfolder if its your first library. Restart the IDE.## CompatibilityMCU | Tested Works | Doesn't Work | Not Tested | Notes------------------ | :----------:| :----------:| :---------:| -----Atmega328 @ 16MHz | X | | | Atmega328 @ 12MHz | X | | | Atmega32u4 @ 16MHz | X | | | Use SDA/SCL on pins D3 & D2Atmega32u4 @ 8MHz | X | | | Use SDA/SCL on pins D3 & D2ESP8266 | X | | | SDA/SCL default to pins 4 & 5 but any two pins can be assigned as SDA/SCL using Wire.begin(SDA,SCL)Atmega2560 @ 16MHz | X | | | Use SDA/SCL on Pins 20 & 21ATSAM3X8E | X | | | Use SDA1 and SCL1ATSAM21D | X | | | ATtiny85 @ 16MHz | X | | | ATtiny85 @ 8MHz | X | | | Intel Curie @ 32MHz | | | X | STM32F2 | | | X | * ATmega328 @ 16MHz :Arduino UNO, Adafruit Pro Trinket 5V, Adafruit Metro 328, Adafruit Metro Mini * ATmega328 @ 12MHz :Adafruit Pro Trinket 3V * ATmega32u4 @ 16MHz :Arduino Leonardo, Arduino Micro, Arduino Yun, Teensy 2.0 * ATmega32u4 @ 8MHz :Adafruit Flora, Bluefruit Micro * ESP8266 :Adafruit Huzzah * ATmega2560 @ 16MHz :Arduino Mega * ATSAM3X8E :Arduino Due * ATSAM21D :Arduino Zero, M0 Pro * ATtiny85 @ 16MHz :Adafruit Trinket 5V * ATtiny85 @ 8MHz :Adafruit Gemma, Arduino Gemma, Adafruit Trinket 3V
RTClib.cppC/C++
name it as above and add it to the RTClib library
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#include #include "RTClib.h"#ifdef __AVR__ #include #elif defined(ESP8266) #include #elif defined(ARDUINO_ARCH_SAMD)// nothing special needed#elif defined(ARDUINO_SAM_DUE) #define PROGMEM #define pgm_read_byte(addr) (*(const unsigned char *)(addr)) #define Wire Wire1#endif#if (ARDUINO>=100) #include  // capital A so it is error prone on case-sensitive filesystems // Macro to deal with the difference in I2C write functions from old and new Arduino versions. #define _I2C_WRITE write #define _I2C_READ read#else #include  #define _I2C_WRITE send #define _I2C_READ receive#endifstatic uint8_t read_i2c_register(uint8_t addr, uint8_t reg) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire.endTransmission (); Wire.requestFrom(addr, (byte)1); return Wire._I2C_READ();}static void write_i2c_register(uint8_t addr, uint8_t reg, uint8_t val) { Wire.beginTransmission(addr); Wire._I2C_WRITE((byte)reg); Wire._I2C_WRITE((byte)val); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// utility code, some of this could be exposed in the DateTime API if neededconst uint8_t daysInMonth [] PROGMEM ={ 31,28,31,30,31,30,31,31,30,31,30,31 };// number of days since 2000/01/01, valid for 2001..2099static uint16_t date2days(uint16_t y, uint8_t m, uint8_t d) { if (y>=2000) y -=2000; uint16_t days =d; for (uint8_t i =1; i  2 &&y % 4 ==0) ++days; return days + 365 * y + (y + 3) / 4 - 1;}static long time2long(uint16_t days, uint8_t h, uint8_t m, uint8_t s) { return ((days * 24L + h) * 60 + m) * 60 + s;}////////////////////////////////////////////////////////////////////////////////// DateTime implementation - ignores time zones and DST changes// NOTE:also ignores leap seconds, see http://en.wikipedia.org/wiki/Leap_secondDateTime::DateTime (uint32_t t) { t -=SECONDS_FROM_1970_TO_2000; // bring to 2000 timestamp from 1970 ss =t % 60; t /=60; mm =t % 60; t /=60; hh =t % 24; uint16_t days =t / 24; uint8_t leap; for (yOff =0;; ++yOff) { leap =yOff % 4 ==0; if (days <365 + leap) break; days -=365 + leap; } for (m =1;; ++m) { uint8_t daysPerMonth =pgm_read_byte(daysInMonth + m - 1); if (leap &&m ==2) ++daysPerMonth; if (days =2000) year -=2000; yOff =year; m =month; d =day; hh =hour; mm =min; ss =sec;}DateTime::DateTime (const DateTime©):yOff(copy.yOff), m(copy.m), d(copy.d), hh(copy.hh), mm(copy.mm), ss(copy.ss){}static uint8_t conv2d(const char* p) { uint8_t v =0; if ('0' <=*p &&*p <='9') v =*p - '0'; return 10 * v + *++p - '0';}// A convenient constructor for using "the compiler's time":// DateTime now (__DATE__, __TIME__);// NOTE:using F() would further reduce the RAM footprint, see below.DateTime::DateTime (const char* date, const char* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" yOff =conv2d(date + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (date[0]) { case 'J':m =date[1] =='a' ? 1 :m =date[2] =='n' ? 6 :7; descanso; case 'F':m =2; descanso; case 'A':m =date[2] =='r' ? 4 :8; descanso; case 'M':m =date[2] =='r' ? 3 :5; descanso; case 'S':m =9; descanso; case 'O':m =10; descanso; case 'N':m =11; descanso; case 'D':m =12; descanso; } d =conv2d(date + 4); hh =conv2d(time); mm =conv2d(time + 3); ss =conv2d(time + 6);}// A convenient constructor for using "the compiler's time":// This version will save RAM by using PROGMEM to store it by using the F macro.// DateTime now (F(__DATE__), F(__TIME__));DateTime::DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time) { // sample input:date ="Dec 26 2009", time ="12:34:56" char buff[11]; memcpy_P(buff, date, 11); yOff =conv2d(buff + 9); // Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec switch (buff[0]) { case 'J':m =buff[1] =='a' ? 1 :m =buff[2] =='n' ? 6 :7; descanso; case 'F':m =2; descanso; case 'A':m =buff[2] =='r' ? 4 :8; descanso; case 'M':m =buff[2] =='r' ? 3 :5; descanso; case 'S':m =9; descanso; case 'O':m =10; descanso; case 'N':m =11; descanso; case 'D':m =12; descanso; } d =conv2d(buff + 4); memcpy_P(buff, time, 8); hh =conv2d(buff); mm =conv2d(buff + 3); ss =conv2d(buff + 6);}uint8_t DateTime::dayOfTheWeek() const { uint16_t day =date2days(yOff, m, d); return (day + 6) % 7; // Jan 1, 2000 is a Saturday, i.e. returns 6}uint32_t DateTime::unixtime(void) const { uint32_t t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); t +=SECONDS_FROM_1970_TO_2000; // seconds from 1970 to 2000 return t;}long DateTime::secondstime(void) const { long t; uint16_t days =date2days(yOff, m, d); t =time2long(days, hh, mm, ss); return t;}DateTime DateTime::operator+(const TimeSpan&span) { return DateTime(unixtime()+span.totalseconds());}DateTime DateTime::operator-(const TimeSpan&span) { return DateTime(unixtime()-span.totalseconds());}TimeSpan DateTime::operator-(const DateTime&right) { return TimeSpan(unixtime()-right.unixtime());}////////////////////////////////////////////////////////////////////////////////// TimeSpan implementationTimeSpan::TimeSpan (int32_t seconds):_seconds(seconds){}TimeSpan::TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds):_seconds((int32_t)days*86400L + (int32_t)hours*3600 + (int32_t)minutes*60 + seconds){}TimeSpan::TimeSpan (const TimeSpan©):_seconds(copy._seconds){}TimeSpan TimeSpan::operator+(const TimeSpan&right) { return TimeSpan(_seconds+right._seconds);}TimeSpan TimeSpan::operator-(const TimeSpan&right) { return TimeSpan(_seconds-right._seconds);}////////////////////////////////////////////////////////////////////////////////// RTC_DS1307 im plementationstatic uint8_t bcd2bin (uint8_t val) { return val - 6 * (val>> 4); }static uint8_t bin2bcd (uint8_t val) { return val + 6 * (val / 10); }boolean RTC_DS1307::begin(void) { Wire.begin(); return true;}uint8_t RTC_DS1307::isrunning(void) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS1307_ADDRESS, 1); uint8_t ss =Wire._I2C_READ(); return !(ss>>7);}void RTC_DS1307::adjust(const DateTime&dt) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission();}DateTime RTC_DS1307::now() { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS1307_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() { int mode; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire.endTransmission (); Wire.requestFrom((uint8_t)DS1307_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) { Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(DS1307_CONTROL); Wire._I2C_WRITE(mode); Wire.endTransmission();}void RTC_DS1307::readnvram(uint8_t* buf, uint8_t size, uint8_t address) { int addrByte =DS1307_NVRAM + address; Wire.beginTransmission(DS1307_ADDRESS); Wire._I2C_WRITE(addrByte); Wire.endTransmission (); Wire.requestFrom((uint8_t) DS1307_ADDRESS, size); for (uint8_t pos =0; pos >=3; mode &=0x7; return static_cast(mode);}void RTC_PCF8523::writeSqwPinMode(Pcf8523SqwPinMode mode) { Wire.beginTransmission(PCF8523_ADDRESS); Wire._I2C_WRITE(PCF8523_CLKOUTCONTROL); Wire._I2C_WRITE(mode <<3); Wire.endTransmission();}////////////////////////////////////////////////////////////////////////////////// RTC_DS3231 implementationboolean RTC_DS3231::begin(void) { Wire.begin(); return true;}bool RTC_DS3231::lostPower(void) { return (read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG)>> 7);}void RTC_DS3231::adjust(const DateTime&dt) { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); // start at location 0 Wire._I2C_WRITE(bin2bcd(dt.second())); Wire._I2C_WRITE(bin2bcd(dt.minute())); Wire._I2C_WRITE(bin2bcd(dt.hour())); Wire._I2C_WRITE(bin2bcd(0)); Wire._I2C_WRITE(bin2bcd(dt.day())); Wire._I2C_WRITE(bin2bcd(dt.month())); Wire._I2C_WRITE(bin2bcd(dt.year() - 2000)); Wire.endTransmission (); uint8_t statreg =read_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG); statreg &=~0x80; // flip OSF bit write_i2c_register(DS3231_ADDRESS, DS3231_STATUSREG, statreg);}DateTime RTC_DS3231::now() { Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE((byte)0); Wire.endTransmission (); Wire.requestFrom(DS3231_ADDRESS, 7); uint8_t ss =bcd2bin(Wire._I2C_READ() &0x7F); uint8_t mm =bcd2bin(Wire._I2C_READ()); uint8_t hh =bcd2bin(Wire._I2C_READ()); Wire._I2C_READ(); uint8_t d =bcd2bin(Wire._I2C_READ()); uint8_t m =bcd2bin(Wire._I2C_READ()); uint16_t y =bcd2bin(Wire._I2C_READ()) + 2000; return DateTime (y, m, d, hh, mm, ss);}Ds3231SqwPinMode RTC_DS3231::readSqwPinMode() { int mode; Wire.beginTransmission(DS3231_ADDRESS); Wire._I2C_WRITE(DS3231_CONTROL); Wire.endTransmission (); Wire.requestFrom((uint8_t)DS3231_ADDRESS, (uint8_t)1); mode =Wire._I2C_READ(); mode &=0x93; return static_cast(mode);}void RTC_DS3231::writeSqwPinMode(Ds3231SqwPinMode mode) { uint8_t ctrl; ctrl =read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL); ctrl &=~0x04; // turn off INTCON ctrl &=~0x18; // set freq bits to 0 if (mode ==DS3231_OFF) { ctrl |=0x04; // turn on INTCN } else { ctrl |=mode; } write_i2c_register(DS3231_ADDRESS, DS3231_CONTROL, ctrl); //Serial.println( read_i2c_register(DS3231_ADDRESS, DS3231_CONTROL), HEX);}
RTClib.hC/C++
that's the name. add it to the RTClib library. Now you have all the files for the RTClib library. Do the same steps to add this to the arduino libraries.
// Code by JeeLabs http://news.jeelabs.org/code/// Released to the public domain! Enjoy!#ifndef _RTCLIB_H_#define _RTCLIB_H_#include class TimeSpan;#define PCF8523_ADDRESS 0x68#define PCF8523_CLKOUTCONTROL 0x0F#define PCF8523_CONTROL_3 0x02#define DS1307_ADDRESS 0x68#define DS1307_CONTROL 0x07#define DS1307_NVRAM 0x08#define DS3231_ADDRESS 0x68#define DS3231_CONTROL 0x0E#define DS3231_STATUSREG 0x0F#define SECONDS_PER_DAY 86400L#define SECONDS_FROM_1970_TO_2000 946684800// Simple general-purpose date/time class (no TZ / DST / leap second handling!)class DateTime {public:DateTime (uint32_t t =0); DateTime (uint16_t year, uint8_t month, uint8_t day, uint8_t hour =0, uint8_t min =0, uint8_t sec =0); DateTime (const DateTime©); DateTime (const char* date, const char* time); DateTime (const __FlashStringHelper* date, const __FlashStringHelper* time); uint16_t year() const { return 2000 + yOff; } uint8_t month() const { return m; } uint8_t day() const { return d; } uint8_t hour() const { return hh; } uint8_t minute() const { return mm; } uint8_t second() const { return ss; } uint8_t dayOfTheWeek() const; // 32-bit times as seconds since 1/1/2000 long secondstime() const; // 32-bit times as seconds since 1/1/1970 uint32_t unixtime(void) const; DateTime operator+(const TimeSpan&span); DateTime operator-(const TimeSpan&span); TimeSpan operator-(const DateTime&right);protected:uint8_t yOff, m, d, hh, mm, ss;};// Timespan which can represent changes in time with seconds accuracy.class TimeSpan {public:TimeSpan (int32_t seconds =0); TimeSpan (int16_t days, int8_t hours, int8_t minutes, int8_t seconds); TimeSpan (const TimeSpan©); int16_t days() const { return _seconds / 86400L; } int8_t hours() const { return _seconds / 3600 % 24; } int8_t minutes() const { return _seconds / 60 % 60; } int8_t seconds() const { return _seconds % 60; } int32_t totalseconds() const { return _seconds; } TimeSpan operator+(const TimeSpan&right); TimeSpan operator-(const TimeSpan&right);protected:int32_t _seconds;};// RTC based on the DS1307 chip connected via I2C and the Wire libraryenum Ds1307SqwPinMode { OFF =0x00, ON =0x80, SquareWave1HZ =0x10, SquareWave4kHz =0x11, SquareWave8kHz =0x12, SquareWave32kHz =0x13 };class RTC_DS1307 {public:boolean begin(void); static void adjust(const DateTime&dt); uint8_t isrunning(void); static DateTime now(); static Ds1307SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds1307SqwPinMode mode); uint8_t readnvram(uint8_t address); void readnvram(uint8_t* buf, uint8_t size, uint8_t address); void writenvram(uint8_t address, uint8_t data); void writenvram(uint8_t address, uint8_t* buf, uint8_t size);};// RTC based on the DS3231 chip connected via I2C and the Wire libraryenum Ds3231SqwPinMode { DS3231_OFF =0x01, DS3231_SquareWave1Hz =0x00, DS3231_SquareWave1kHz =0x08, DS3231_SquareWave4kHz =0x10, DS3231_SquareWave8kHz =0x18 };class RTC_DS3231 {public:boolean begin(void); static void adjust(const DateTime&dt); bool lostPower(void); static DateTime now(); static Ds3231SqwPinMode readSqwPinMode(); static void writeSqwPinMode(Ds3231SqwPinMode mode);};// RTC based on the PCF8523 chip connected via I2C and the Wire libraryenum Pcf8523SqwPinMode { PCF8523_OFF =7, PCF8523_SquareWave1HZ =6, PCF8523_SquareWave32HZ =5, PCF8523_SquareWave1kHz =4, PCF8523_SquareWave4kHz =3, PCF8523_SquareWave8kHz =2, PCF8523_SquareWave16kHz =1, PCF8523_SquareWave32kHz =0 };class RTC_PCF8523 {public:boolean begin(void); void adjust(const DateTime&dt); boolean initialized(void); static DateTime now(); Pcf8523SqwPinMode readSqwPinMode(); void writeSqwPinMode(Pcf8523SqwPinMode mode);};// RTC using the internal millis() clock, has to be initialized before use// NOTE:this clock won't be correct once the millis() timer rolls over (>49d?)class RTC_Millis {public:static void begin(const DateTime&dt) { adjust(dt); } static void adjust(const DateTime&dt); static DateTime now();protected:static long offset;};#endif // _RTCLIB_H_

Esquemas

This is the schematic of the project. 7segmentClock.fzz

Proceso de manufactura

  1. Tabla de planchar
  2. Reloj de cuco
  3. Placa de circuito impreso
  4. Tabla de surf
  5. Cómo hacer una plataforma de robot Arduino + Raspberry Pi
  6. Placa RaspiRobot V2
  7. Reloj de visión pov de Arduino
  8. Reloj de palabras simple (Arduino)
  9. Reloj espejo infinito
  10. Hay más de una razón para fabricar una placa de circuito impreso impecable
  11. Comprender la configuración del motor